How many do you see in the outside layer? How do you see them? How did you work it out?

## Creating algorithms to investigate number patterns

Tierney Kennedy

How do you see them now?
What has changed?


How might your algorithm change?



What would come next? How did you work it out? What is the number pattern?

How do you see them now?
What has changed?


How might your algorithm change?


## How different are they really?

Algorithm: systematic set of steps, instructions or decisions for a task... that always work
This means that because all of our different algorithms will always work, they have to be actually the same mathematically.

What does the curriculum say kids have to do?

## Early years

Foundation: recognise, copy and continue repeating patterns represented in different ways Year 1: recognise, continue and create pattern sequences with numbers... formed by skip counting, initially by twos, fives and tens
Recognise, continue and create repeating patterns with numbers... identifying the repeating unit

Year 2: recognise, describe and create additive patterns that increase or decrease by a
constant amount, using numbers... and identify missing elements in the pattern
From other statements involving multiplication and division of single-digit numbers: Doubling and halving, repeated addition, equal grouping, arrays

5

## What do kids have to do with number patterns?

Year 3:

- follow and create algorithms involving a sequence of steps and decisions
- to investigat
numbers;
- describe any emerging patterns

Year 4:

- follow and create algorithms involving a sequence of steps involving a seq
that use addition or multiplication to generate sets of numbers;
identify and describe any emerging patterns Explain and use the properties of odd and even number

Year 5:

- create and use algorithms involving a sequence of steps and decisions and digital tools
- to experiment with factors, multiples and divisibility;
identify, interpret and escribe emerging patterns Express natural numbers as products of their factors, recognise multiples and determine if one number is divisible by another

What do kids have to do with number patterns?
Year 6:

- create and use algorithms involving a
sequence of steps and decisions
that use rules to generate sets of
numbers;
- identify, interpret and explain emerging patterns
dentify and describe the properties of
prime, composite and square numbers and
use these properties to solve problems and simplify calculations
Recognise and use rules that generate
Recognise and use rules that generate patterns involving rational numbers


## Let's try it - exploring factors and multiples

What we will do: follow algorithms, create algorithms, investigate numbers, describe patterns
Try the following and describe any patterns you can find in the answers. Choose any two-digit number...

1. Double it... what patterns can you find in the answers?
2. Multiply it by 5 ... what patterns can you find in the answers?
3. Thinking logically... 10 is a multiple of both 2 and 5 , so if we multiply a number by 10 it should fit both patterns. What should be true?

9

| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 |
| 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
| 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 |
| 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 |
| 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
| 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 |
| 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |

Find a number that is divisible
by...

- 18
- 15
- 20
- 36


## Let's try it - more steps for our algorithms

Try the following and describe any patterns you can find in the answers. Choose any two-digit number...

1. Triple it... what patterns can you find in the answers?
2. 6 is a multiple of both 2 and $3 \ldots$ what patterns should be true if a number is multiplied by 6 ? Try it and check.
3. 4 is a multiple of 2 , and then 2 again... how might a multiple of 4 fit the $2 s$ pattern twice? Try it and check.
4. How could you use your patterns so far for multiples of $12,25 \ldots$ ?

What is the number pattern?



13


15

What is the number pattern?


14

What is the number pattern?


What happens if we join...?


Thanks and please fill in your surveys
Tierney Kennedy
www.backtofrontmaths.com.au

