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Introduction 
Media articles often portray instructivist and constructivist approaches pitted against each other, promoting “maths wars” and failing to reflect a balanced approach (Abtahi and Barwell, 2022). 
This either-or debate fails to reflect research and classroom findings – that both approaches have their merits and both also have their problems. As Hattie recently stated in an article on Visible Learning: the sequel, 

“So many debates about curriculum and learning outcomes are phrased as either more “knowledge-rich” (teaching content) or more “problem-based discovery learning” (teaching how to discover ideas). But it is not a question of either/or. We need to be greedy and want both.” (Hattie, 2023)

This article presents the results from a longitudinal study of three schools in South Australia who chose to implement a balanced teaching-learning cycle. By the third year of implementation, growth rates on PAT Maths testing had increased by 75% from their 2018 baseline rates (n=610 students).
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Short literature summary of instructivist and constructivist approaches

Instructivist-based research emphasises high impacts on standardised-testing results; as well as arguing that the approaches tend to be easy it is for teachers to implement with fidelity (Ellis, 2005; Ewing, 2011; Farkota, 2013; Kirschner et. al, 2006). In particular, instructivist approaches have been shown to have high impacts on students identified as at-risk of school failure (Adams & Engelmann, 1996; Ellis, 2005). Criticisms of instructivist approaches centre on the emphasis of procedures over conceptual understanding (Cooney, 2001; D'Ambrosio & Harkness, 2004; Wood & Doan, 2006); little or no practice at solving mathematical problems (Schoenfeld, 1994); and minimal opportunities for constructing an identity as a successful mathematics learner (D'Ambrosio & Harkness, 2004). 

Constructivist-based research argues that solving challenging problems supports conceptual thinking and produces greater overall learning gains than instructivist approaches (Boaler & Staples, 2008; Rakes et. al, 2010; Stein & Lane, 1996). In particular, the use of challenging tasks to introduce new mathematical concepts is argued generate higher levels of engagement (Sullivan et al., 2015), facilitate opportunities for reasoning and creative thinking (Stein & Lane, 1996; Sullivan & Davidson, 2014), improve persistence (Sullivan et al., 2014) and result in faster learning gains (Rakes et al., 2010). Criticisms of constructivist approaches centre on the idea that minimally guided instruction ignores the “structures, functions, and characteristics of working and long-term memory” (Kirschner et. al, 2006, p.77), that when students are provided with minimal feedback they often become lost and frustrated leading to misconceptions (Brown and Campione, 1994), and that that because false starts are common learning is often inefficient (Carlson, Lundy, & Schneider, 1992).

A third approach, Conceptual Change Programs, emphasises the need for change or growth at the conceptual level for learning to occur (Carey, 1985; 1986; Posner et al.,1982; Strike & Posner, 1985, 1992). This centres around the idea of motivating learners to change their own ideas or beliefs (Mayer, 2008; Posner et al., 1982; Resnick, 1983). In science, this typically involves using an experimental problem paired with discrepant events and questioning (Erilymaz, 2002; Swan, 2001) to create cognitive conflict (Posner et al., 1982; Resnick, 1983) whereby a learner recognizes an anomaly in their own thinking and then actively constructs a new model that explains the observable facts (Mayer, 2008). In mathematics classrooms, the approach tends to involve the juxtaposition of discrepant events and questioning to address student conceptions (see Askew and Wiliam, 1995; Kennedy, 2015a; Swan, 2001; Swan, 2005). A strong body of research shows very high impacts in science (Hattie, 2015). Some research also exists showing strong growth rates and results for low-performing students in mathematics (Kennedy, 2018; Swan, 2001, 2005), however very little mathematics research has focused on students at other levels.

Background information on this study and the implementation strategy
All teachers and students from three South Australian primary schools took part in the study between 2019 and 2021. Two schools were urban and one was rural. All three schools sent small team of teachers to a training project with the author in 2018, then elected to continue the project across all classes at the start of 2019. The different teaching lessons were introduced gradually, with an initial focus on experimental problems and conceptual change questioning as teachers were more familiar with explicit teaching. 
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The teaching-learning cycle
The approach implemented by teachers involved implementing different types of lessons to achieve different purposes. The diagram below illustrates the overall process, with descriptions to follow.

Experimental Problem 
Each cycle began with an experimental problem – an unfamiliar or non-routine problem that was explored by students prior to formal explanation based on the Launch, Explore, Summarise model (Lappan et al., 2006). These problems acted as formative assessment for illustrating misconceptions. Using these problems at the start of a teaching cycle allowed subsequent lessons to be more targeted. 
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Experimental lessons began with a challenging, but closed problem, enabling teachers to quickly determine whether ideas were correct or incorrect and addressing teachers’ difficulties with identifying misconceptions (Son & Kim, 2015). Students made conjectures about possible answers, then started on the process of trying out their ideas. Teachers aimed for roughly 80% of initial conjectures to be incorrect.

Within five minutes, the teacher gathered the whole class back together for an evaluation of initial conjectures. During this session, the teacher focused incorrect ideas that were shared by multiple students. The teacher posed questions that encouraged students to test out their conjecture, rather than attempting to lead students towards a different answer. They watched student body language, looking for evidence of cognitive conflict or surprise that would indicate that the student realised their idea had not worked.
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At that point, students could elect to go back and change their minds, or to stay with the teacher if they thought their ideas were correct. Students who went back to have a second try worked together to try and solve the problem. Students who stayed with the teacher were divided into two groups: those who were correct (or close to correct), and those whose ideas were incorrect but thought they were correct. The teacher challenged the students who were correct-or-close to compare answers and prove that their ideas worked. They were provided with extending prompts (Sullivan et al, 2009) to work on together. Students who were incorrect worked with the teacher, who provided additional questioning and adapted the question as needed.

If the majority of students solved the problem, the teacher provided a simple summary and then challenged students with a more difficult problem. However, where students had not solved the problem teachers were encouraged to delay providing a solution until the next day. While this initially proved difficult as students were frustrated, teachers noted that students were far more engaged in the solution by the next lesson and a number had continued to think about it overnight. Within 6-8 weeks, the culture of the classes changed and both students and teachers became more comfortable with this process.

At the end of each lesson, teachers recorded some simple observations to help them make the best use of the following lessons:
B: 	Best thinking – jot initials of students who have done some of their best thinking
P: 	Passengers – jot initials of students who were just “along for the ride”
N: 	Next – jot one “next action” to take following the lesson (e.g., share a student’s strategy, build in an explanation using a particular idea, use a specific follow-up question, build the concept into a specific area of maths).

Explicit Strategy Focus
The follow up lesson involved summarising any solutions students had found, then explicitly teaching strategies and practising skills, somewhat similar to the summary phase of the Launch-Explore-Summarise Framework (Lappan et al., 2006). Teachers began by asking selected students who had successfully solved the problem to share their strategies with the class. Only good strategies were selected for whole-class sharing, after which the teacher re-explained the strategy to students, illustrating each step. The teacher could also elect to share another strategy with the class if helpful, or stick with the student-generated strategy. When possible, strategies were named after the students who developed them. Where multiple good strategies were shared, the class compared the strategies to find the mathematical similarities between them, and focus on the essential steps. At this point, teachers provided some practise questions and further extension.

While full lesson plans were not provided for these lessons as teachers were mostly familiar with the approach, guidance on appropriate strategies and key concepts was supplied during professional learning times.

Extend and Generalise
A third type of lesson focused on the patterns, extending a strategy to more complex questions and generalising rules. Questions often required students to manipulate their strategy, working backwards or filling a gap in an unusual position in an equation. They focused on identifying patterns, creating rules, adapting the rules to more complex questions and establishing principles that could be transferred to related contexts. 

Interleaved and Spaced Fluency for Retrieval
In the third year of each project, teachers were introduced to the work of Bjork and Bjork on the theory of disuse (1992) and Roher et. al on interleaved practise (2019). A fourth type of lesson was introduced to focus on developing retrieval skills and increasing retention over time. During this lesson, students worked with a partner through a set of interleaved and spaced questions. Answers to the questions were provided to students, acting as an enabling prompt and encouraging them to try the more difficult questions together. Throughout the session, teachers did not help students with the questions, but instead worked with small groups or individuals for short amounts of time as needed (e.g., worked with students identified as “passengers” in the experimental problem, checked in with students requiring extension on their progress in investigations…). At the end of these sessions, students selected questions that they had struggled to solve for the teacher to review the next day.

Training and Resourcing
In 2019, each school undertook an initial student free day for training, then participated in 4-5 follow up sessions with smaller groups of teachers spread throughout the year. During the first six months, teachers trialled the experimental problem lesson, using specifically selected interventions lessons targeted at key number concepts (Kennedy, 2015b). The initial success of this trial built both skills and confidence, leading to adopting the balanced cycle for 2-3 lessons each week for the remainder of 2019. Each term, teachers were supported with in-person and online sessions along with resources to adapt for their class. During 2020, teachers continued to implement the approach, with support each term through professional learning. In 2021, PL was cut back to a single day each semester, with a focus on interleaved and spaced practise. On average, this added up to 20 hours of professional learning per teacher, spread over the three years.

In addition to the interventions lessons, teachers were provided with a set of adaptable lesson plans for ACv8 (Kennedy, 2012) as a starting point for implementing the approach. Rather than requiring implementation with fidelity, teachers were encouraged to adapt the plans to suit their students, allowing for the complexities inherent in real school environments. They were also provided with a suggested work program that used just under 50% of their lessons, encouraging teachers to self-select or design additional lessons to respond to their students’ needs. These lessons were not planned until the content-teaching lessons were completed, allowing teachers to provide just-in-time intervention, support or extension as needed.

Results
PAT-M testing was selected for this study as it was readily available in each school, and provides objective and norm-referenced information on students’ level of achievement, their skills, and understanding of mathematics (Lindsey et al., 2005). Annual growth data from 2017-2018 provided a baseline for each year level (n=610 students in 2018). Data were only included if students completed PAT-M testing in two adjacent years. Student growth rates for each year level during 2018 was compared with student growth for each year level during 2021  (n=622 students in 2021). 
On average, growth rates increased by 75%.

	Year (no. students)
	Pre-test mean
	Post-test mean
	Growth

	2018 (610)
	116.1
	120.1
	4.0

	2021 (622)
	117.7
	124.7
	7.0



Each year level’s growth was also compared to the 50th percentile figures published by ACER. The graph and table that follow show the growth rate expressed in years, compared to those figures.




	 Year level
	2018 growth  in years compared to the 50th percentile
	2021 growth in years compared to the 50th percentile
	Increase in growth rate (in years)

	Year 3
	1.2
	1.1
	-0.1

	Year 4
	0.8
	1.4
	0.7

	Year 5
	0.3
	1.2
	0.9

	Year 6
	1.2
	2.8
	1.6

	Year 7
	-0.2
	2.2
	2.4



All year levels, with the exception of year 3, increased their growth rates by at least 0.7 years. In 2021, all year levels were growing at a higher rate than the 50th percentile rate. 

Tracked students
Results could be tracked from 2018-2021 for 80 year 7 students and 93 year 6 students. Year 7 tracked results showed that students increased from the 53rd percentile in 2018 to the 70th percentile in 2021. Year 6 tracked students increased from the 53rd percentile to the 73rd percentile.



Discussion and Conclusion
Over the course of the three year project, the rate of growth on standardised testing increased by 75%. Students who were at the school for four successive PAT tests achieved at around 20 percentile points higher, indicating a significant rate of improvement. These results indicate that explicit and problem-based approaches can be used in a complementary manner, creating a balanced teaching cycle, and with significant potential to improve the rate at which students learn mathematics.
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PAT M student growth 2018 vs 2021
(growth in score, 3 schools, n=622)

Project students	Year 3

Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	105.02909090909097	111.6636363636363	Baseline year	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	102.60624999999997	111.29999999999993	Year 4	
Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	111.35967741935477	119.78387096774202	Baseline 4	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	112.05746268656706	117.41865671641794	Year 5	
Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	118.01914893617027	123.17304964539014	Baseline 5	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	116.71259842519697	118.41653543307089	Year 6	
Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	123.17687074829929	132.74829931972783	Baseline 6	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	121.23359374999998	126.15703124999995	Year 7	
Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	131.00599999999991	135.453	Baseline 7	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	128.33669724770644	127.48256880733945	50th percentile 2016	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	103	110.9	117.4	122.7	127	130.5	
PAT M Scale Score




Tracked student growth on PAT M with percentile curves (n=173, 2018-2021)

20th	2	3	4	5	6	7	90.6	98.9	105.5	112.11799999999999	116.696	121.2	28th	2	3	4	5	6	7	94.7	102.8584	109.49227999999999	115.6	119.8	124	41st	2	3	4	5	6	7	99.9	107.9791	114.63729000000001	120.1652	124.3	128.1	50th	2	3	4	5	6	7	103.1	110.95000000000002	117.5	122.8	127.3	130.69999999999999	62nd	2	3	4	5	6	7	107.7	115.0372	121.65612	126.7	130.86680000000001	134.1	70th	2	3	4	5	6	7	110.9	118.75	125.19999999999999	129.5	133.85	136.6	81st	2	3	4	5	6	7	116.1	124.15910000000002	130	134.05000000000001	138.6	141	Year 7s
(n=80)	2	3	4	5	6	7	118.70000000000002	136.58375000000001	Year 6s
(n=93)	2	3	4	5	6	7	112.43010752688173	134.57311827956991	Year Level


PAT M Scale Score
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